当初通过神经接入技术给李高亮同志装上钛合金价值,让他重新站起来的时候,高等研究院的信息技术专家就曾经和他感慨过这个话题。
不只是让脊神经受损的截瘫患者重新站起来。
如果能够将复杂的视觉信号和听觉信号,也像动作信号那样经过编译之后进行模拟,让设备与神经假体或者大脑直接连接,说不准那种幻想中的让意识潜入数字世界的神经接入式虚拟现实技术,也将不再是个幻想。
当时陆舟就表示,这确实是个有意思的课题,可以研究一下,不过当时还有一堆更重要的事情等着他去做,这件事情也就被他扔在了脑后。
现在,恰逢碳基芯片技术出现革新性的突破,身上的积分又多的没地方花,被那个叫叶南的人提醒了一句之后,这事儿又被陆舟重新想了起来。
想到还躺在休眠舱里的薇拉,陆舟觉得如果自己暂时还没法让她醒过来的话,至少得试着为她做些什么。
虽然他也清楚,这玩意儿能在她身上管用的希望,相当的渺茫……
换了身衣服之后,坐在电脑前的陆舟,将自己写下来的东西梳理了一遍。
简单的来说,该技术的核心部件,主要可以分为三个模块。
一个是神经信号的采集,一个是神经信号的处理,最后便是对神经信号的模拟,也就是最后将信息反馈给大脑的阶段。
这三个核心部件,技术难度是按顺序依次递增的。
神经信号的采集非常简单,早在80年代就已经存在EEG传感器这种东西了,也就是所谓的脑电图传感器。而发展到了今天,这项技术有多先进,甚至已经超过了一般接触不到这项技术的普通人的想象。
无论是硅谷的Eyemynd创建的由用户通过意念即可导航虚拟世界的VR系统,还是18年时美国佛罗里达大学16名学生完成了世界首场脑电波无人机竞赛引发的轰动,都是这种技术的一种体现。
至于第二项——也就是对神经信号的处理,难度相对于神经信号的采集,则要复杂一些。
虽然表面上看这玩意儿考验的不过是计算机对信息的处理能力,但事实上它却是一个相当复杂的程序性问题。
这种复杂在于人类对自身大脑的了解所知甚少,除非是有限的情况,视觉信号,听觉信号以及嗅觉信号对大脑刺激,远远比不上动作信号那么强烈。
想要将这些信号进行区分,并且编译出一套用来架构虚拟现实世界的指令集,以及操作系统……这等等一系列的工作,都可以归类于第二项。
至于第三项,将经过神经信号调制解调器处理的电信号传递给大脑,也就是对用户的体验感影响最为直观的呈现环节,则是整个神经接入式虚拟现实技术中最最复杂且困难的部分。
原因很简单。
就像人们在发展该技术的第二个核心部件上碰到的困难一样,如果连了解大脑这台机器都做不到的话,又如何向大脑这台机器输出可以被它读懂的信号?
本章节尚未完结,共3页当前第1页,请点击下一页继续阅读------>>>